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Abstract. An eigenvalue equation, for linear instability modes involving large scales in a convective hydro-
magnetic system, is derived in the framework of multiscale analysis. We consider a horizontal layer with
electrically conducting boundaries, kept at fixed temperatures and with free surface boundary conditions
for the velocity field; periodicity in horizontal directions is assumed. The steady states must be stable
to short (fast) scale perturbations and possess symmetry about the vertical axis, allowing instabilities
involving large (slow) scales to develop. We expand the modes and their growth rates in power series in
the scale separation parameter and obtain a hierarchy of equations, which are solved numerically. Second
order solvability condition yields a closed equation for the leading terms of the asymptotic expansions and
respective growth rate, whose origin is in the (combined) eddy diffusivity phenomenon. For about 10% of
randomly generated steady convective hydromagnetic regimes, negative eddy diffusivity is found.

PACS. 47.65.-d Magnetohydrodynamics and electrohydrodynamics – 47.10.-g General theory in fluid
dynamics – 47.27.-i Turbulent flows

1 Introduction

According to the present-day paradigm, magnetic fields of
most astrophysical objects – the Earth and the outer plan-
ets of the Solar system having a molten metal fluid core [1],
the Sun [2] and other stars, and even entire galaxies [3]
– owe their existence to convective hydromagnetic pro-
cesses [4–6]. Convection in the presence of a magnetic field
obeys a familiar set of equations: the Navier-Stokes equa-
tion with Lorentz and Archimedes forces for the flow, the
magnetic induction equation for the magnetic field, and
the heat equation for temperature. Virtually no analytic
solutions of this system of equations are known except for
some significantly reduced cases [7], under the assump-
tion that certain symmetries are present, or for specific
initial conditions. The referred set of equations may be
used to simulate the evolution of astrophysical convec-
tive hydromagnetic systems. This approach was followed
in [8–10], where magneto-convection in an idealised plane
layer was considered, and in [11–18], where the outer core
of the Earth was modelled by three-dimensional equations
of hydromagnetic convection in a spherical layer and, as a
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result, the predominant dipole morphology of the Earth’s
magnetic field was correctly reproduced in computations.

However, in practise, accurate simulations for geo-
and astrophysical real parameter values are close to
impossible, because the limited power of available com-
puters prohibits computations with the adequate spa-
tial (insufficient memory) and temporal (insufficient CPU
power) resolution. The simulations done by Glatzmaier
and Roberts [11–16] were performed for parameter val-
ues differing by several orders of magnitude from those
characterising the outer liquid core of the Earth. Nev-
ertheless, the agreement between these simulations and
the geodynamo is surprising [18]. The existence of sharp
contrast spatial structures (e.g., Ekman boundary layer,
which emerges in convective flows in a rotating layer with
no-slip boundary conditions, and the instability of which
may be a source of dynamo [19–23]) and the prominent
role which turbulence plays in the generation of magnetic
fields, indicate that such a high resolution is indeed neces-
sary in simulations. Core-mantle coupling, which is be-
lieved to cause decade variations of the length of day,
is another geophysical phenomenon involving small scales
(topographic features at the boundary are unlikely to ex-
ceed 5 km in amplitude; see [1]). Validity of numerical
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techniques for smoothening the resolution cut-off, such as
employment of hyperviscosity, is questionable [24–27].

A significant uncertainty in rheology relations [28] and
parameter values [29] in the convective hydromagnetic
equations (for instance, estimates of thermal diffusivity for
the Earth core differ in several orders of magnitude [1]),
makes it desirable to investigate typical regimes of be-
haviour of the solutions by varying the parameters in cer-
tain ranges and finding locations, in the parameter space,
of bifurcations marking drastic changes in behaviour [30].
A purely numerical approach to the implementation of
this task would require a further significant increase of the
amount of computations. Consequently, a semi-analytic
approach, employing asymptotic relations, is unavoidable
as an alternative to both purely analytic and numerical
approaches. Here we employ it to consider the problem of
linear stability of three-dimensional convective hydromag-
netic steady states in a layer.

Multiscale techniques, such as coarse-grained averag-
ing, are used to establish relationships between the dif-
ferent scales, breaking the problem into several compu-
tationally manageable blocks. The typical formulation of
these problems involves partial differential equations with
rapidly varying coefficients, which require extremely fine
numerical grids and thus huge computational resources.
The construction of homogenised differential operators,
which involve slow varying coefficients, is a way of cap-
turing the smooth part of the solutions.

The characteristic spatial scale of the perturbed steady
state is supposed to be much larger than that of the steady
state. The ratio of the spatial scale of the flow (fast spatial
variable) to the large scale of perturbation (slow variable),
ε, is a small parameter. (By small- and large-scale vector
fields we refer to fields involving spatial scales of the or-
der of the width of the layer and much larger scales, re-
spectively.) Applying methods of the general theory of ho-
mogenisation of differential operators [31–34], we expand
perturbation modes and their growth rates in asymptotic
series in the parameter ε and obtain a homogenised opera-
tor in slow variables, acting on mean fields. Eigenvalues of
this operator control stability to large-scale perturbations.
The advantage of this approach stems from opening the
possibility to disentangle the large and small scales and
fully resolve small scales by solving the so-called auxiliary
problems.

Generically, the multiscale analysis reveals the pres-
ence of α-effect (see [35–37]). The homogenised linear op-
erator is then the first-order differential operator. Con-
sequently, the system is generically unstable, since the
spectrum of the operator is symmetric about the origin
(if a mode W(x) is associated with an eigenvalue λ, then
W(−x) is a mode associated with the eigenvalue −λ).
In convective hydromagnetic systems which possess sym-
metry about a vertical axis or parity-invariance, α-effect
is not present and the homogenised equations involve a
second-order partial differential operator, whose eigen-
functions are Fourier harmonics. Its eigenvalues may be
positive, implying instability. This phenomenon is referred
to as negative (combined) eddy diffusivity [38]. Instability

of this kind is weak: in the presence of α-effect the growth
rate of the dominant perturbations is O(ε), whereas it is
O(ε2) when α-effect is absent. Evaluation of eddy tensors
emerging in the homogenised equations requires solution
of auxiliary problems, which are linear elliptic partial dif-
ferential equations in fast variables. With just a single
characteristic spatial scale involved, they are not too de-
manding numerically.

Multiscale asymptotic analysis was successfully
applied to various problems of hydrodynamics and mag-
netohydrodynamics. The effect of negative eddy vis-
cosity arises in two-dimensional [39–41] and three-
dimensional [42–44] hydrodynamic systems, if the flow is
parity-invariant or if it is a Beltrami field (in [42] large
scale along only one direction was assumed). Eddy diffu-
sivity can be complex [45,44]. In generic hydrodynamic
systems, which do not possess the properties mentioned
above, similar expansions indicate the presence of the so-
called AKA-effect (i.e. anisotropic kinetic α-effect) [35,36].
In passive scalar transport systems, eddy diffusivity can
only enhance molecular diffusivity [46,47].

In the kinematic dynamo problem (concerning mag-
netic field generation, when the feedback influence of mag-
netic field on the flow via the Lorentz force is neglected),
multiscale expansions were apparently first introduced
in [48] and [49] (where scale separation was related to fast
rotation of the layer of conducting fluid). Similar asymp-
totic expansions in the kinematic problem (for flows, the
amplitude of which may depend on the scale ratio) predict
occurrence of α-effect [37,50,51]. Generation of large-scale
magnetic field by the negative magnetic eddy diffusivity
mechanism is possible for parity-invariant steady [52–54]
(in [54], large scale along only one direction was assumed)
or time-periodic flows [55], and by convective Bisshopp
cell patterns [56], symmetric about the vertical axis. Com-
bined eddy diffusivity tensors for large-scale perturbations
of both the flow and magnetic field constituting a parity-
invariant three-dimensional MHD steady state were de-
rived in [57].

In the papers cited above two different scales were
present in the system. Multiscale expansions with three
spatial scales were employed in [58,59] to study the small-
angle instability [60] in convection in a rotating layer.

Evolution of a mean hydrodynamic large-scale pertur-
bation in the weakly nonlinear regime was considered in
the absence of magnetic field for two-dimensional parity-
invariant space-periodic flows [41,61], and for three-
dimensional MHD systems [62]. In [62] it is not required
that the MHD state, nonlinear stability of which is exam-
ined, is either space periodic or steady; equations for the
mean flow and magnetic field are generalisations of the
Navier-Stokes and magnetic induction equation with an
anisotropic (in general) combined eddy diffusivity tensor
and quadratic eddy advection.

In Section 2, we present the equations for ther-
mal convection in the presence of magnetic field and
discuss boundary conditions and symmetries. In Sec-
tion 3, the multiscale formalism is applied. In Section 3.1,
an eigenfunction of the linearisation of a convective
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hydromagnetic system and its associated eigenvalue are
expanded in a power series of the scale separation param-
eter and a hierarchy of equations is derived. In Section 3.2,
the solvability condition, which plays an important role in
solution of equations of this hierarchy and in derivation
of an equation for the mean part of perturbation in the
leading order, is discussed. In Sections 3.3 and 3.4, the
first two (order 0 and order 1) equations in the hierarchy
are expressed as a linear combination of the so-called aux-
iliary problems. In Section 3.5, we consider the solvabil-
ity condition for equations at order 2 and thereby derive
the eigenvalue equation for the mean part of the leading
terms in the expansions of the instability modes and their
growth rates. At this stage emerges the homogenised com-
bined eddy diffusivity operator acting on mean fields. In
Section 4, we briefly describe the numerical procedure for
solving the auxiliary problems and present a set of basic
fields which lead to large-scale instability for appropriate
physical parameters (namely molecular diffusivities). Fi-
nally (Sect. 5), we comment on possible extensions and
limitations of the application of multiscale techniques em-
ployed here to study the instability of convective flows in
the presence of magnetic field.

2 Equations of thermal convection
in the presence of magnetic field

2.1 Time evolution of a convective hydromagnetic
system

Magnetic field generation by thermal convection is gov-
erned by the Navier-Stokes equation, the magnetic induc-
tion equation and heat transfer equation [63]:

∂tV = V × (∂ × V) − ∂p + ν∂2V

−H× (∂ × H) − α(T − T0)G + F̃,

∂ · V = 0,

∂tH = ∂ × (V × H) + η∂2H + R̃, (1)
∂ ·H = 0,

∂t T = −(V · ∂)T + k∂2T +
σ

2
|∂ × H|2 + S̃,

where V = (V1, V2, V3), H = (H1, H2, H3) and T , depend-
ing on position in space x = (x1, x2, x3) and time t, are
the velocity field, the magnetic field and the temperature,
respectively. We use the notation ∂t ≡ ∂/∂t, ∂i ≡ ∂/∂xi

and ∂ ≡ ∑3
i=1 ei∂i, where ei is the ith canonical vector.

The term involving G (gravity, G = −g e3 for a hori-
zontal layer) is the buoyancy force due to temperature
variation and H × (∂ × H) is the Lorentz force. F̃ repre-
sents any other body forces acting on the fluid, R̃ is due
to imposed external currents or magnetic fields, and S̃ de-
scribes the distribution of external heat sources. ν is the
kinematic viscosity, η the magnetic diffusivity, and α, k
and σ are parameters related to thermal expansion, ther-
mal conductivity and electrical conductivity, respectively.
Solenoidality of magnetic field follows from the Maxwell

equations. Flows are deemed incompressible in line with
the Boussinesq approximation. Henceforth, the system of
equations (1) will be referred to as CHM (convective hy-
dromagnetic).

We consider the CHM equations in the spatial domain
D = [0, L1] × [0, L2] × [0, L3], assuming periodicity in x1

and x2 directions, and considering a finite layer in the x3

direction. The boundary conditions at the surface of the
layer are
• for the velocity field:

V3|x3=0,L3 = 0,

∂3V1|x3=0,L3 = ∂3V2|x3=0,L3 = 0;

• for the magnetic field:

H3|x3=0,L3 = 0,

∂3H1|x3=0,L3 = ∂3H2|x3=0,L3 = 0;

• for the temperature field:

T |x3=0 = T1,

T |x3=L3 = T2.

It is convenient to introduce the variable

θ = T − T1 − δTx3,

where δT = (T2−T1)/L3, satisfying the uniform boundary
conditions

θ|x3=0,L3 = 0.

A solution to the CHM system may possess symmetry
about the vertical axis, provided the forcing terms F̃, R̃, S̃
possess the same symmetry. A vector field Q is called sym-
metric (about the vertical axis) if

Q1(−x1,−x2, x3) = −Q1(x1, x2, x3),
Q2(−x1,−x2, x3) = −Q2(x1, x2, x3),
Q3(−x1,−x2, x3) = Q3(x1, x2, x3);

and anti-symmetric if

Q1(−x1,−x2, x3) = Q1(x1, x2, x3),
Q2(−x1,−x2, x3) = Q2(x1, x2, x3),
Q3(−x1,−x2, x3) = −Q3(x1, x2, x3).

We call a scalar field f symmetric if

f(−x1,−x2, x3) = f(x1, x2, x3),

and anti-symmetric if

f(−x1,−x2, x3) = −f(x1, x2, x3).

Symmetries are essential to eliminate first order (alpha)
effects. In [43] parity-invariance is used to this purpose,
but, for a horizontal layer, symmetry about the vertical
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A =

⎡

⎢
⎣

ν∂2 + Ṽ × (∂ × •) − (∂ × Ṽ)× −H̃ × (∂ × •) + (∂ × H̃)× −αG

−∂ × (H̃ × •) η∂2 + ∂ × (Ṽ × •) 0

−(• · ∂)θ̃ − δTe3· σ(∂ × H̃) · (∂ × •) k ∂2 − Ṽ · ∂

⎤

⎥
⎦ . (4)

axis is more realistic. Furthermore, parity invariance is
inconsistent with the basic equations (1) for σ �= 0. Un-
der an appropriate forcing, any hydromagnetic convective
system will possess steady states with these symmetries.

2.2 Linearised CHM operator

Let us consider a steady state solution, p̃, Ṽ, H̃ and θ̃,
of the CHM system (1) and a small perturbation, peλt,
Veλt, Heλt and θeλt, of this steady state, where p, V, H
and θ depend only on spatial variables. In what follows,
we will call the spatial profiles of the perturbation fields,
p, V, H and θ, a perturbation. Replacing p, V, H, θ,
respectively, by p̃+peλt, Ṽ+Veλt, H̃+Heλt, θ̃+θeλt in (1)
and neglecting second order terms in the perturbation, we
obtain an eigenvalue problem for the perturbation:

AW = λW +

⎡

⎣
∂p
0
0

⎤

⎦ ,

∂ ·V = 0,
∂ ·H = 0.

(2)

Here, the block notation introduced in [43] is used:

W =

⎡

⎣
V
H
θ

⎤

⎦ , (3)

is the (3 + 3 + 1)-dimensional block column vector com-
bining the 3 components of the flow, the 3 components of
the magnetic field and the temperature field. In what fol-
lows, (3+3+1)-dimensional vectors of a similar structure,
will be used. The operator A is obtained by linearisation
of the CHM equations in the vicinity of the steady state
p̃, Ṽ, H̃ and θ̃; it can be represented as a block matrix
(acting on (3+3+1)-dimensional vectors of the structure
similar to (3)):

see equation (4) above.

Note that A preserves the symmetry of fields W, sym-
metric (or anti-symmetric) about the vertical axis.

The complete formulation of the eigenvalue prob-
lem (2) involves specifying spatial periods of perturba-
tions, which can be any integer multiples of the periods
L1 and L2. If the smallest of the periodicity boxes is con-
sidered, the system of equations (2) is referred to as the
problem of linear stability to short-scale perturbations.

3 Linearised large-scale CHM equation

3.1 The two-scales expansion

In this section we construct a homogenisation of the lin-
earised CHM operator. Following the method applied in
previous studies [52,53,55,57], we consider fast variables,
x, representing the short scale dynamics, and slow vari-
ables, X = (X1, X2) = (εx1, εx2), representing the large
scale dynamics (in a horizontal layer of finite width only
slow variables in horizontal directions are geometrically
consistent). The scaling parameter ε is small (ε � 1),
meaning that the characteristic length of large-scales is
much bigger than the characteristic length of the system.
Assuming that the perturbations p, V, H and θ depend
both on fast and slow variables, the solution of the eigen-
value problem can be expressed in a series of powers of ε.
By substituting the series expansion in (2) and equating
the terms in εn, at each order n, a hierarchy of equations
is obtained. The equations in this hierarchy involve ex-
clusively on fast variables. The solvability conditions of
this equations control the large scale components of the
perturbation. A homogenised equation for the large-scale
part of the leading term emerges at the first non-trivial
solvability condition. Eigenvalues of the homogenised op-
erator control linear stability of the CHM steady state to
perturbations with spatial periods large enough for the
asymptotic behaviour to set in.

The first step is to expand W, p and λ in power series
of ε:

W =
n∑

i=0

εiW(i) + O(εn+1), (5)

p =
n∑

i=0

εip(i) + O(εn+1), (6)

λ =
n∑

i=0

εiλi + O(εn+1). (7)

Each coefficient W(i) and p(i) in the expansions is a func-
tion of both x and X. Consequently, the chain rule must
be applied to every spatial derivative in (2): ∂i → ∂i +ε∇i

for i = 1, 2, with ∇i ≡ ∂/∂Xi and ∇ ≡ ∑2
i=1 ei∇i. This

implies

A = A(0) + εA(1) + ε2A(2),
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A(0) =

⎡

⎢
⎣

ν∂2 + Ṽ × (∂ × •) − (∂ × Ṽ)× −H̃ × (∂ × •) + (∂ × H̃)× −αG

−∂ × (H̃ × •) η∂2 + ∂ × (Ṽ × •) 0

−(• · ∂)θ̃ − δTe3· σ(∂ × H̃) · (∂ × •) k ∂2 − Ṽ · ∂

⎤

⎥
⎦ , (8)

A(1) =

⎡

⎢
⎣

2ν∂ · ∇ + Ṽ × (∇× •) −H̃ × (∇× •) 0

−∇× (H̃ × •) 2η∂ · ∇ + ∇× (Ṽ × •) 0

0 σ(∂ × H̃) · (∇× •) 2k∂ · ∇ − Ṽ · ∇

⎤

⎥
⎦ , (9)

A(2) = Ξ∇2, with Ξ =

⎡

⎢
⎣

ν 0 0

0 η 0

0 0 k

⎤

⎥
⎦ (10)

where

see equations (8)–(10) above.

(Ξ is the molecular diffusivity tensor). Note that A(0) and
A(2) preserve the symmetries of both symmetric and anti-
symmetric fields, but A(1) exchanges their symmetry.

Substituting the series expansions of the fields and the
operator in (2) and equating the terms in εn, at each or-
der n, we obtain the hierarchy of equations:

– order 0:

A(0)W(0) = λ0W(0) +

⎡

⎣
∂p(0)

0
0

⎤

⎦ , (11)

∂ · V(0) = 0, (12)

∂ ·B(0) = 0, (13)

– order 1:

A(0)W(1) = −A(1)W(0) + λ0W(1) + λ1W(0)

+

⎡

⎣
∂p(1) + ∇p(0)

0
0

⎤

⎦ , (14)

∂ · V(1) = −∇ · V(0), (15)

∂ ·B(1) = −∇ · B(0), (16)

– order 2:

A(0)W(2) = − A(1)W(1) − A(2)W(0) + λ0W(2)

+ λ1W(1) + λ2W(0) +

⎡

⎣
∂p(2) + ∇p(1)

0
0

⎤

⎦ ,

(17)

∂ ·V(2) = −∇ ·V(1), (18)

∂ · B(2) = −∇ ·B(1), (19)

– order n:

A(0)W(n) = − A(1)W(n−1) − A(2)W(n−2)

+
n∑

i=0

λiW(n−i) +

⎡

⎣
∂p(n) + ∇p(n−1)

0
0

⎤

⎦ ,

(20)

∂ · V(n) = −∇ · V(n−1), (21)

∂ ·B(n) = −∇ · B(n−1). (22)

Let 〈•〉 = (L1L2L3)−1
∫
D •dx1dx2dx3 denote the mean

(over the fast variables in the layer D) and {•} = • −
〈•〉 denote the fluctuating part of a vector or scalar field
here denoted indistinguishably by •. The average 〈•〉 is the
large scale component of the respective field. It is possible
to solve recursively all equations in the hierarchy, finding
all terms of the expansions (5)–(7). For the symmetries
presented in Section 2.1, only the equations up to order 2
are required to derive a homogenised eigenvalue equation
for the mean parts (large-scale components), 〈W(0)〉 and
〈p(0)〉, of the leading terms. It emerges as the solvability
condition for the equation in the fast variables at order 2.

3.2 Solvability conditions

Let P be the projection into the subspace of (3 + 3 +
1)-dimensional fields, in which the 3-dimensional vector
components are solenoidal:

P

⎡

⎣
QV

QH

Qθ

⎤

⎦ =

⎡

⎣
QV − ∂QVp

QH − ∂QHp

Qθ

⎤

⎦ ,

where ∂2QVp = ∂ · QV and ∂2QHp = ∂ · QH . In what
follows, we will solve equations of the form

PA(0)f = Pg,

where vector components of f are required to be
solenoidal; this equation is thus equivalent to

PA(0)Pf = Pg. (23)
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A(0)∗ =

⎡

⎣
ν∂2 − ∂ × (Ṽ × •) + (∂ × Ṽ)× H̃ × (∂ × •) −e3δT + θ̃∂

∂ × (H̃ × •) − (∂ × H̃)× η∂2 − Ṽ × (∂ × •) σ∂ × (∂ × H̃) − σ(∂ × H̃) × (∂•)
−αG · 0 k∂2 + Ṽ · ∂

⎤

⎦ .

By the Fredholm alternative [64], a solution of (23) exists
if and only if Pg is orthogonal to the kernel of (PA(0)P)∗,
where ∗ denotes the adjoint operator. In other words, the
solvability condition for (23) is 〈Pg, c〉 = 0, where c is
any vector in ker(PA(0)∗P) and 〈·, ·〉 denotes the L2 in-
ner product. As usual, the adjoint operator A(0)∗ can be
derived performing integration by parts in the identity
〈A(0)∗W1,W2〉 = 〈W1,A(0)W2〉. In the present case

see equation above.

The boundary conditions for the vector fields in the do-
main of A(0)∗ can be found from the condition that bound-
ary surface integrals, emerging in integration by parts in
the scalar product 〈W1,A(0)W2〉, vanish. It can be ver-
ified that the boundary conditions that we assume hold
for vector fields in the domain of the adjoint operator as
well.

Our construction relies on the existence of vector
fields in ker(PA(0)P) with non-vanishing average hori-
zontal components of the flow and magnetic field (see a
detailed discussion in [56]). It can be easily established
that the dimension of the subspace of ker(PA(0)P), con-
sisting of such vectors, is equal to the dimension of the
subspace of ker(PA(0)∗P) consisting of vectors with non-

zero horizontal space averages. If c =

⎡

⎣
cV

cH

0

⎤

⎦, where cV

and cH are any constant horizontal vectors, evidently
PA(0)∗Pc = 0, since A(0)∗c is a gradient. Such constant
vector fields satisfy the boundary conditions under con-
sideration; therefore any such c belongs to ker(PA(0)∗P).
Thus, ker(PA(0)P) is at least four-dimensional. In what
follows, we assume that the dimension is four, which is
generically the case, and thus any non-zero vector from
ker(PA(0)P) has non-zero horizontal averages of the flow
and/or magnetic field components. Then the solvability
condition for (23) consists of orthogonality of gV and gH

to constant horizontal vectors, i.e. the horizontal compo-
nents of 〈gV 〉 and 〈gH〉 must vanish.

3.3 Equations at order 0

Decoupling of the large- and short-scale behaviour is evi-
dent in the form of solutions of the equations emerging at
orders 0 and 1 in the hierarchy. Since A(0) is an operator in
the fast variables, short-scale variation of these solutions
is exclusively due to their multiplicative dependence on
solutions of (11)–(13) and (14)–(16) – the so-called aux-
iliary problems, which are partial differential equations in
the fast variables.

Performing integration and using the boundary con-
ditions, we find that the horizontal components of the
flow and magnetic field components of 〈A(0)W(0)〉 vanish.

Since we seek solutions where 〈V(0)〉 and 〈H(0)〉 do not
vanish simultaneously, averaging of (11) implies λ0 = 0.
The problem to solve becomes

A(0)W(0) =

⎡

⎣
∂p(0)

0
0

⎤

⎦ , (24)

together with the solenoidality conditions for V(0) and
H(0), i.e.

PA(0)PW(0) = 0.

By linearity,

W(0) =
4∑

i=1

ai Si, {p(0)} =
4∑

i=1

ai Sp
i . (25)

The fields Si =

⎡

⎣
SV

i

SH
i

Sθ
i

⎤

⎦ and Sp
i are linearly independent

solutions of the problems

A(0)Si =

⎡

⎣
∂Sp

i
0
0

⎤

⎦ ,

∂ · SV
i = 0,

∂ · SH
i = 0,

(26)

i.e. Si are linearly independent fields in ker(PA(0)P). The
gradient part of (26) satisfies

∂2Sp
i = ∂ ·

(
A(0)Si

)V

. (27)

Note that 〈p(0)〉 cannot be determined at this order, since
derivatives in the fast variables in the r.h.s. of (24) elim-
inate any averages in p(0). Si and Sp

i depend only on
the fast variables. The coefficients of the linear combi-
nations (25), ai, depend only on the slow variables.

The four possible averages (constant mean fields) in
ker(PA(0)P), selected by the boundary conditions, are

〈S1〉 =

⎡

⎣
e1

0
0

⎤

⎦ , 〈S2〉 =

⎡

⎣
e2

0
0

⎤

⎦ ,

〈S3〉 =

⎡

⎣
0
e1

0

⎤

⎦ , 〈S4〉 =

⎡

⎣
0
e2

0

⎤

⎦ .

Hence, the four auxiliary problems at order 0 are

A(0){S1} =

⎡

⎣
∂(Sp

1 − Ṽ1) + ∂1Ṽ
∂1H̃
∂1θ̃

⎤

⎦ , (28)
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Bj =

⎡

⎢
⎣

2ν∂j + ejṼ · • − Ṽj −ejH̃ · • + H̃j 0

−H̃ej · • + H̃j 2η∂j + Ṽej · • − Ṽj 0

0 σ
∑3

k=1

(
∂jH̃k − ∂kH̃j

)
ek· 2k∂j − Ṽj

⎤

⎥
⎦ . (34)

A(0){S2} =

⎡

⎣
∂(Sp

2 − Ṽ2) + ∂2Ṽ
∂2H̃
∂2θ̃

⎤

⎦ , (29)

A(0){S3} =

⎡

⎣
∂(Sp

3 + H̃1) − ∂1H̃
−∂1Ṽ

0

⎤

⎦ , (30)

A(0){S4} =

⎡

⎣
∂(Sp

4 + H̃2) − ∂2H̃
−∂2Ṽ

0

⎤

⎦ , (31)

with Sp
i given by (27).

Solenoidal parts of the right hand sides of (28)–(31) are
anti-symmetric and, since A(0) preserves the symmetry of
fields, Si are anti-symmetric. Evidently, the order 0 aux-
iliary problems are of the form of (23), and their solvabil-
ity follows immediately from the periodicity of the CHM
steady state Ṽ, H̃, θ̃ in horizontal directions.

3.4 Equations at order 1

Averaging of (14) yields
〈
A(0)W(1)

〉
=

−
〈
A(1)W(0)

〉
+ λ1〈W(0)〉 +

⎡

⎣
∇〈p(0)〉

0
0

⎤

⎦ . (32)

As in order 0, horizontal parts of the flow and magnetic
field components of 〈A(0)W(1)〉 are zero. The same holds
for 〈A(1)W(0)〉 (this can be shown, integrating directly
the terms of the form of spatial derivatives and using the
boundary conditions, and exploiting the symmetry of the
perturbed CHM steady state and anti-symmetry in the
fast variables of V(0) and H(0) when considering mean
horizontal parts of the terms of the form of Ṽ×(∇×V(0))).
(32) becomes

λ1〈W(0)〉 +

⎡

⎣
∇〈p(0)〉

0
0

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦ .

Thus, if λ1 �= 0, then 〈H(0)〉 = 0 and 〈V(0)〉 =
−∇〈p(0)〉/λ1. However, averaging of (15) over the fast
variables yields ∇ · 〈V(0)〉 = 0, with 〈V(0)〉 and ∇〈p(0)〉
belonging thereby to orthogonal subspaces. This implies
〈V(0)〉 = 0, which contradicts the original assumption
that 〈V(0)〉 and 〈H(0)〉 do not vanish simultaneously.
Therefore, λ1 = 0, 〈p(0)〉 = 0 and (14) reduces to

A(0)W(1) = −A(1)W(0) +

⎡

⎣
∇p(0)

0
0

⎤

⎦+

⎡

⎣
∂p(1)

0
0

⎤

⎦ . (33)

From (25) we find

−A(1)W(0) +

⎡

⎣
∇p(0)

0
0

⎤

⎦ =
4∑

i=1

2∑

j=1

Mij∇jai,

where

Mij = −BjSi +

⎡

⎣
ejS

p
i

0
0

⎤

⎦

and

see equation (34) above

The problem at this order reduces to

A(0)W(1) =
4∑

i=1

2∑

j=1

Mij∇jαi +

⎡

⎣
∂p(1)

0
0

⎤

⎦ .

Therefore, by linearity,

W(1) =
4∑

i=1

2∑

j=1

∇jaiΓij +
4∑

i=1

biSi, (35)

{p(1)} =
4∑

i=1

2∑

j=1

∇jaiΓ
p
ij +

4∑

i=1

biS
p
i , (36)

where Γij =

⎡

⎢
⎣

ΓV
ij

ΓH
ij

Γ θ
ij

⎤

⎥
⎦ and Γ p

ij are mean-free linearly inde-

pendent solutions of the auxiliary problem at order 1 :

A(0)Γij = Mij +

⎡

⎣
∂Γ p

ij

0
0

⎤

⎦ ,

∂ · ΓV
ij = − (SV

i

)
j
,

∂ · ΓH
ij = − (SH

i

)
j
.

(37)

Taking the divergence of the velocity component, we ob-
tain a Poisson equation for Γ p

ij :

∂2Γ p
ij = ∂ ·

(
A(0)Γij − Mij

)V

. (38)

The average of p(1) cannot be determined at this order,
since derivatives in the fast variables in the r.h.s. of (33)
eliminate it. In (35) and (36), bi depend only on the slow
variables, and the fields Γij and Γ p

ij only on the fast ones.
It is convenient to solve (37) in the subspace of (3+3+1)-
dimensional vector fields, where vector components are
solenoidal. Consider the substitution

Γij = Γ′
ij +

⎡

⎣
∂ΠV

ij

∂ΠH
ij

0

⎤

⎦ .
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The conditions

∂2ΠV
ij = − (SV

i

)
j
, ∂2ΠH

ij = − (SH
i

)
j

imply ∂ · Γ′V
ij = ∂ · Γ′H

ij = 0. At order 1 we have thus to
solve eight equations:

PA(0)Γ′
ij = P

⎛

⎝Mij − A(0)

⎡

⎣
∂ΠV

ij

∂ΠH
ij

0

⎤

⎦

⎞

⎠ (39)

for i = 1, . . . , 4 and j = 1, 2. Solvability of (39) can be
easily verified by symmetry arguments, since Bj changes
the symmetry of fields.

3.5 The mean-field equations for the CHM instability
mode

At order 2 the solvability condition is not trivially satisfied
and yields equations for the large-scale mean components
of the instability mode. We consider orthogonality of the
r.h.s. of (17) to ker (PA(0)∗P), i.e.
〈

Cl, λ2W(0) − A(2)W(0) − A(1)W(1) +

⎡

⎣
∇p(1)

0
0

⎤

⎦

〉

= 0,

(40)
∀Cl ∈ ker(PA(0)∗P). From (35),

A(1)W(1) =
4∑

i=1

2∑

j,k=1

BkΓij∇k∇jai.

Since Cl are constant, (40) is equivalent to

λ2

4∑

i=1

〈Cl,Si〉ai −
4∑

i=1

〈Cl,ΞSi〉∇2ai

−
4∑

i=1

2∑

j,k=1

〈Cl,BkΓij〉∇k∇jai + 〈CV
l ,∇〈p(1)〉〉 = 0.

(41)

From the system of equations (41), we find ai; then W(0)

is obtained from (25). Thus, we have derived a closed set of
equations for the leading terms in the expansions (5)–(7)
of eigenmodes and their growth rates. The leading term
in the eigenvalue expansion is λ2, i.e. λ = O(ε2). This
growth rate determines the characteristic slow time scale
of the large-scale dynamics: T = ε2t, typical of diffusive
behaviour.

Since only horizontal components of CV
l and CH

l

can be nonzero for constant vectors Cl ∈ ker(PA(0)∗P)
(see Sect. 3.2), we can choose Cl = 〈Sl〉. This implies
〈Si,Cl〉 = δli (here δli is the Kronecker symbol). Then (41)
takes the form

λ2

4∑

i=1

δliai +
4∑

i=1

2∑

j,k=1

〈Cl,−ΞSiδjk − BkΓij〉∇k∇jai

+〈CV
l ,∇〈p(1)〉〉 = 0. (42)

This is an eigenvalue problem for the second order partial
differential operator with constant coefficients, which is
called combined eddy diffusivity operator. It admits Fourier
harmonics as eigenfunctions:

an(X) = ân(q)eiq·X, 〈p(1)〉 = p̂(q)eiq·X, (43)

where q = (q1, q2) is an arbitrary unit wavevector and
n = 1, ..., 4. Upon substitution we find that the coefficients
ân satisfy

⎡

⎢
⎣

(λ2 + ν)â1

(λ2 + ν)â2

(λ2 + η)â3

(λ2 + η)â4

⎤

⎥
⎦+ E

⎡

⎢
⎣

â1

â2

â3

â4

⎤

⎥
⎦ = −ip̂(q)

⎡

⎢
⎣

q1

q2

0
0

⎤

⎥
⎦ , (44)

where E is the 4 × 4 matrix

Eli =
2∑

j,k=1

qkqj〈Cl,BkΓij〉. (45)

Averaging of (15) and (16) yields ∇ · 〈V(0)
〉

= 0 and
∇· 〈H(0)

〉
= 0. By virtue of these solenoidality conditions

and (43),

(â1, â2) = â′
1(q2,−q1),

(â3, â4) = â′
2(q2,−q1).

Substituting these expressions into (44) and scalar multi-
plying it by (q2,−q1; q2,−q1), we reduce (44) to an equiv-
alent 2 × 2 eigenvalue problem:

[
(λ2 + ν)â′

1

(λ2 + η)â′
2

]

+ E′
[

â′
1

â′
2

]

= 0, (46)

where

E′
11 = E11q

2
2 − (E12 + E21)q1q2 + E22q

2
1 ,

E′
12 = E13q

2
2 − (E14 + E23)q1q2 + E24q

2
1 ,

E′
21 = E31q

2
2 − (E32 + E41)q1q2 + E42q

2
1 ,

E′
22 = E33q

2
2 − (E34 + E43)q1q2 + E44q

2
1 .

Noting that q = (cos θ, sin θ), θ ∈ [0, 2π], we obtain

λ±
2 (θ) = − b

2

(

1 ±
√

1 − 4c

b

)

,

with b = ν + η + E′
11 + E′

22 and c = νη + νE′
22 + ηE′

11 +
E′

11E
′
22 − E′

12E
′
21. The maximum and minimum growth

rates,
λmax

2 = max
θ∈[0,2π]

max
{
λ+

2 (θ), λ−
2 (θ)

}
, (47)

λmin
2 = min

θ∈[0,2π]
min

{
λ+

2 (θ), λ−
2 (θ)

}
, (48)

are admitted for θ’s denoted by θmax and θmin, respec-
tively.
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4 Numerical results

The auxiliary problems were solved numerically using
pseudo-spectral methods to evaluate the action of the op-
erators A(0) (8) and Bj (34) on the fields. In the finite
direction of the layer, the usual plane wave basis was re-
placed by a half period sine or cosine basis, agreeing with
the boundary conditions:

f(x, y, z) =
∑

nkx , nky , nkz

f̂(kx, ky, kz)ei(kxx+kyy) sin(kzz),

for a scalar function satisfying Dirichlet-kind boundary
conditions, and

f(x, y, z) =
∑

nkx , nky , nkz

f̂(kx, ky, kz)ei(kxx+kyy) cos(kzz),

for a scalar function satisfying Neumann-kind bound-
ary conditions, with kx = 2πnkx/L1, ky = 2πnky/L2,
kz = πnkz /L3 and nkx , nky , nkz ∈ Z. For each auxil-
iary problem, a linear system of equations in the Fourier
space was obtained and solved numerically by the conju-
gate gradients method [65].

Asymptotic expansions for large molecular diffusivi-
ties, as well as comparison with previous calculations for
plan form velocity fields [56], were used to validate the
code. As previously stated, the basic steady state must
be stable to short-scale perturbations, i.e. the dominant
eigenvalue (λshort) of the operator A must have a nega-
tive real part. The dominant eigenvalue can be evaluated
using the method used in [66] for perturbations in each of
the two symmetry subspaces.

We want to model magnetic instabilities in turbulent
convective flows. For the reasons exposed in the intro-
duction, simulations of fully turbulent regimes are very
resource expensive. Within the scope of our approach,
steady states can be randomly generated with decaying
energy spectrum. Such states satisfy the basic equations
for the appropriate source terms. Usually only a finite
number of Fourier harmonics (kmin ≤ k < kmax) is gen-
erated, the remaining being set to 0. Applying the appro-
priate linear transformations, we make sure that the gen-
erated CHM steady states are solenoidal and possess the
required symmetry. The coefficients are then normalised
to obtain the desired energy spectrum and the norm
(r.m.s.) of each field is set to 1. Algebraic (E(k) ∼ k−ξ)
or exponential (E(k) ∼ exp(−ξk)) spectra were used
in [53,57,56].

Zheligovsky et al. [53] found that flows with exponen-
tially decaying spectra are statistically better dynamos.
However, in fully developed turbulence, the energy spec-
trum in the inertial range is known to be algebraic. In
this work, all fields have been normalised to have decay-
ing algebraic energy spectra, with ξ = 4, for the Fourier
modes with 0 ≤ k < 7. Simulations have been carried
out for the periodicity box of size 2π × 2π × π, with the
resolution of 32 × 32 × 16 Fourier harmonics. An ensem-
ble of 1000 instances of CHM states has been generated.
It turns out that 110 out of 1000 generated flows exhibit
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Fig. 1. Statistics of eddy diffusivity.

negative combined eddy diffusivity (see Fig. 1). The values
ν = µ = κ = 0.5 were chosen that large so that to make
sure that the randomly generated CHM states were sta-
ble to short-scale perturbations. We have directly checked,
by computation of the decay rates of the dominant short-
scale modes, that 30 of the generated CHM states from
our ensemble are indeed stable; for 3 of them eddy dif-
fusivity is negative. No instances of CHM states unstable
to short-scale perturbations were found for these values of
diffusivities.

In Figure 2, the fields corresponding to one of the gen-
erated steady states are presented. The short-scale growth
rates are λshort = −0.5662, for symmetric perturbations,
and λshort = −0.05175, for antisymmetric perturbations.
The maximum and minimum growth rates of large-scale
perturbations are λmax

2 = 1.426, for θmax = 3.392, and
λmin

2 = −1.165, for θmin = 3.593, respectively. The maxi-
mum growth rate is positive (which corresponds to a neg-
ative eigenvalue of the eddy diffusivity tensor), i.e. a large-
scale instability is present. All the auxiliary problems show
a decaying energy spectrum (see Figs. 3–8 below) and the
expected symmetries can be observed.

Spatial short-scale structure of the large-scale eigen-
mode is defined by the leading term W(0) in the expan-
sion (5), and therefore by the fields Si (see (25)). Mag-
netic field in all of them (see Figs. 3–6) has the form of
distorted “retrograde columns” [67] and concentrates near
the horizontal boundaries of the layer. This kind of struc-
ture is reproduced in their linear combination W(0) for
the most unstable mode (see Fig. 7). Such behaviour was
originally noticed in the non-linear evolutionary simula-
tions [67] of magnetic field generation by rotating thermal
convection, and it can be attributed to the boundary con-
ditions, namely, ideal electric conductivity of the bound-
aries. It is interesting that this feature is quite robust –
from the formal point of view our problem is evidently
quite different from the one considered in [67].
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Steady state velocity

Steady state temperature 

Steady state magnetic field

Steady state energy spectra

Fig. 2. Basic (steady state) fields and corresponding energy spectra. Symmetry about the z-axis is observed in all of the
displayed fields.

S1 : velocity

S1 : temperature S1 : energy spectra

S1 : magnetic field

Fig. 3. S1 fields and corresponding energy spectra. Anti-symmetry about the z-axis is observed in all of the displayed fields.
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S2 : velocity S2 : magnetic field

S2 : temperature S2 : energy spectra

Fig. 4. S2 fields and corresponding energy spectra. Anti-symmetry about the z-axis is observed in all of the displayed fields.

S3 : velocity S3 : magnetic field

S3 : temperature S3 : energy spectra

Fig. 5. S3 fields and corresponding energy spectra. Anti-symmetry about the z-axis is observed in all of the displayed fields.
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S4 : velocity S4 : magnetic field

S4 : temperature S4 : energy spectra

Fig. 6. S4 fields and corresponding energy spectra. Anti-symmetry about the z-axis is observed in all of the displayed fields.

W(0) : velocity W(0) : magnetic field

W(0) : energy spectraW(0) : temperature

Fig. 7. Short-scale structure of W(0), for λmax
2 . Anti-symmetry about the z-axis is observed in all of the displayed fields.
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Γ11 : velocity Γ11 : magnetic field

Γ11 : energy spectraΓ11 : temperature

Fig. 8. Γ11 fields and corresponding energy spectra. Symmetry about the z-axis is observed in all of the displayed fields.

5 Concluding remarks

We have derived an eigenvalue equation for large-scale per-
turbation modes of a CHM steady state. On average (over
small spatial scales) the modes are, in the leading order,
simple harmonic waves. Their growth rates are controlled
by the combined diffusivity tensor, involving molecular
kinematic viscosity and magnetic diffusivity and an ad-
ditional tensor – the so-called combined eddy (turbulent)
diffusivity correction, which is anisotropic (the entries of
the matrix E′ depend on the direction of the wave vec-
tor q), and which intermixes the influence of the flow and
magnetic field. Originally this mutual influence is due to
advection (the influence of the flow on magnetic field) and
the action of the Lorentz force (the influence of the mag-
netic field on the flow), but it has now a different algebraic
form – in particular, unlike in these basic physical laws, it
is, on average, linear.

We have found that about 10% of randomly generated
steady CHM regimes, that are stable to short-scale per-
turbations, exhibit negative eddy diffusivity; such steady
states are unstable to large-scale perturbations. However,
the growth rate of the perturbation is quadratic in the
scale ratio ε, i.e. it is small. Thus, this instability can be
observed only if the considered CHM steady state is sta-
ble to short-scale perturbations, which would have larger
(O(ε0)) growth rates otherwise. Other competing linear
instabilities may also persist. For instance, in thermal con-
vection in a rotating layer with free boundaries (with no
magnetic field present), steady rolls, steady square cells,

standing and travelling waves near the onset were demon-
strated [58,59] to be unstable to large-scale perturbations
of a particular form (the small angle instability), with the
growth rates scaling as O(ε2) for the rolls and the cells,
and O(ε) for the waves (here ε is the smallest scale ratio in
the system); the rolls and square cells possess symmetry
about the vertical axis.

The restriction that the perturbed CHM state is steady
can be lifted [62]. Instead of averaging over fast spatial
variables, averaging over the spatio-temporal domain of
fast variables must then be performed. This allows, in par-
ticular, to carry out the stability analysis of time-periodic
CHM states. However, in any case the perturbed states are
required to be symmetric (for instance, symmetry about
the vertical axis, as considered here). Parity invariance
is another type of symmetry consistent with the CHM
equations, if the Joule term is neglected. Like the symme-
try about the vertical axis, it guarantees that no α-effect
emerges and it allows to construct a second order com-
bined eddy diffusivity operator by the same method of
homogenisation.

Different multiscale expansions are obtained for differ-
ent sets of conditions imposed at the horizontal boundaries
of the layer. Often considered alternative boundary condi-
tions include the no-slip condition for the flow, an isolator
outside the fluid layer condition for the magnetic field,
and heat insulating boundaries (zero heat flux condition)
for temperature. They can be of interest, for instance, in
geophysical applications (for which the no-slip condition
at the outer kernel boundaries and the isolator condition
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at the outer boundary of the spherical layer are more ap-
propriate than those considered here). The method of ho-
mogenisation that we have used relies on the existence of
constant vector fields in ker(PA(0)∗P). In addition to the
two constant horizontal vectors in the flow and magnetic
field components considered here, another scalar constant,
a fixed temperature, belongs to ker(PA(0)∗P), if Joule
heating is neglected (σ = 0) and the zero heat flux con-
dition for temperature is assumed. Therefore, the proce-
dure of homogenisation that we have used can be applied
if, at least, one of the following conditions is imposed on
the horizontal boundaries: free boundaries, or conduct-
ing boundaries, or no heat flux. Each quantity, satisfying
boundary conditions from this list, increases dimension
of the problem for large-scale mean-fields obtained from
the solvability condition for the equations emerging at or-
der 2. The remaining ones (temperature in the particular
case that we have considered here) are essentially short-
scale and only affect, via solutions of auxiliary problems at
orders 0 and 1, the values of coefficients in the combined
eddy diffusivity tensor for the large-scale quantities. The
boundary conditions for which this approach is not di-
rectly applicable (i.e. the no-slip boundary condition for
the flow, or the insulator condition for the magnetic field,
or fixed temperature) can apparently still be treated by
the homogenisation method that we have applied, but this
requires considering boundary layers, increasing signifi-
cantly the complexity of the problem.

A common feature of astrophysical convective systems,
such as interiors of planets or stars, is rotation. A straight-
forward incorporation of the Coriolis force in the analysis
is inconsistent with the homogenisation procedure that we
have used: averaging of the linearised Navier-Stokes equa-
tion (for the free boundary conditions) shows that con-
stant average non-zero horizontal velocities give rise to
a non-zero average Coriolis force, which can be balanced
only by a constant gradient of pressure. This suggests an
unbounded linear growth of pressure, which is not, how-
ever, unphysical: in a rotating system only pressure can
offset the centrifugal force. The simplest way to overcome
the resultant algebraic difficulties is to consider the vor-
ticity equation, for which the methods for construction of
the two-scale expansion are applicable without any mod-
ifications.

Any comparison of our results with experiments is not
straightforward because of the boundary conditions that
we have assumed. Although experiments with one free
boundary have been reported [68], experiments in layers
with two free boundaries can be only carried out in the
conditions of microgravity on board of satellites. We did
not attempt to reproduce in our computations the pa-
rameter values characteristic of the interior of any astro-
physical objects. Nevertheless, the magnetic field in the
CHM modes that we obtain resemble fragments of granu-
lar structures of the solar magnetic field in the tachocline,
generated in the turbulent deep convective zone (see,
e.g. [69]). We believe therefore that our results may be
applicable within the context of the LES approach to sim-
ulation of the processes in the Sun interior.
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CMAUP (Portugal) and the Russian Foundation for Basic Re-
search (grant 04-05-64699).
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